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Abstract
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Understanding to what extent neural networks memorize training data is an intrigu-
ing question with practical and theoretical implications. In this paper we show that
in some cases a significant fraction of the training data can in fact be reconstructed
from the parameters of a trained neural network classifier. We propose a novel
reconstruction scheme that stems from recent theoretical results about the implicit
bias in training neural networks with gradient-based methods. To the best of our
knowledge, our results are the first to show that reconstructing a large portion of
the actual training samples from a trained neural network classifier is generally
possible. This has negative implications on privacy, as it can be used as an attack
for revealing sensitive training data. We demonstrate our method for binary MLP
classifiers on a few standard computer vision datasets.

1 Introduction

It is commonly believed that neural networks memorize the training data, even when they are able
to generalize well to unseen test data (e.g., [Zhang et al., 2021, Feldman, 2020]). Exploring this
memorization phenomenon is of great importance both practically and theoretically. Indeed, it has
implications on our understanding of generalization in deep learning, on the hidden representations
learnt by neural networks, and on the extent to which they are vulnerable to privacy attacks.

A fundamental question for understanding memorization is:

Are the specific training samples encoded in the parameters of a trained classifier?
Can they be recovered from the network parameters?

In this work, we study this question, and devise a novel scheme which allows us to reconstruct a
significant portion of the training data from the parameters of a trained neural network alone, without
having any additional information on the data. Thus, we provide a proof-of-concept that the learning
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(a) Top 24 images reconstructed from a binary classifier trained on 50 CIFAR10 images

(b) Their corresponding nearest neighbours from the training-set of the model

Figure 1: Reconstruction of training images from a pretrained binary classifier, trained on 50 CIFAR10
images. The two classes are “animals” and “vehicles”. We calculate the nearest neighbor using the
SSIM metric.

process can sometimes be reversed: That is, instead of learning a model given a training dataset, it
is possible to find the training data given a trained model. In Figure 1 we show how our approach
reconstructs images from the CIFAR10 dataset, given a simple trained binary classifier.

Many works try to “crack” neural networks by analyzing and visualizing either their learnt parameters
or representations [Erhan et al., 2009, Mahendran and Vedaldi, 2015, Olah et al., 2017, 2020].
This is usually done by “inverting” the model, namely finding inputs that are strongly correlated
with the model’s activations [Mordvintsev et al., 2015, Yin et al., 2020, Fredrikson et al., 2015].
Unsurprisingly, the results are semantically correlated with the training dataset. However, one rarely
sees an exact version of a training sample.

Our results have potential negative implications on privacy in deep learning. Our scheme can be
viewed as a training-data reconstruction attack, since an adversary might recover sensitive training
data. For example, if a medical device includes a model trained on sensitive medical records, an
adversary might reconstruct this data and thus violate the privacy of the patients. Privacy attacks in
deep learning have been widely studied in recent years (cf. Liu et al. [2021]), but as far as we are
aware, the known attacks cannot reconstruct portions of the training data from a trained model.

Our approach relies on theoretical results about the implicit bias in training neural networks with
gradient-based methods. The implicit bias has been studied extensively in recent years with the
motivation of explaining generalization in deep learning (see Section 2). We use results by Lyu and
Li [2019], Ji and Telgarsky [2020], which establish that, under some technical assumptions, if we
train a neural network with the binary cross entropy loss, its parameters will converge to a stationary
point of a certain margin-maximization problem. This result implies that the parameters of the trained
network satisfy a set of equations w.r.t. the training dataset. In our approach, given a trained network,
we find a dataset that solves this set of equations w.r.t. the trained parameters.

Our Contributions We show that large portions of the training samples are encoded in the parame-
ters of a trained classifier. We also provide a practical scheme to decode the training samples, without
any assumptions on the data. As far as we know, this is the first work that shows that reconstruction
of actual training samples from a trained neural network classifier is possible.

2 Related Work

Understanding and Visualizing what is learnt by Neural Networks. The most common ap-
proach for analysing what is learnt by a neural network is by searching inputs that maximize the
class output or the activations of neurons in intermediate layers [Erhan et al., 2009, Olah et al., 2020].
Oftentimes this is done via optimization with respect to the model input. Optimizing without any prior
on the input usually results in noise inputs. Therefore, most approaches incorporate priors such as
smoothness regularization or the use of pre-trained image generators [Mahendran and Vedaldi, 2015,
Yosinski et al., 2015, Mordvintsev et al., 2015, Nguyen et al., 2016a,b, 2017] (see Olah et al. [2017]
for a comprehensive summary). Optimization w.r.t. the input may also result in adversarial examples
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[Szegedy et al., 2013, Goodfellow et al., 2014]. Recently, [Tsipras et al., 2018, Engstrom et al., 2019]
showed that classifiers trained to be robust to adversarial examples tend to learn representations that
are more aligned with human vision. This was later utilized by [Santurkar et al., 2019, Mejia et al.,
2019] to generate class-conditional images from a trained classifier. While all those approaches
indicate that, unsurprisingly, the learnt representations are strongly correlated with the datasets on
which the model was trained, none of them demonstrate the reconstruction of exact training samples
from the trained models.

Privacy Attacks in Deep Learning. Many methods deal with extracting sensitive information
from trained models. Perhaps the closest to our approach is model-inversion that aims to reconstruct
class representatives from the training data of a trained model [Fredrikson et al., 2015, He et al.,
2019, Yang et al., 2019, Yin et al., 2020]. It is important to note that the reconstructed images, albeit
semantically similar to some input images, are still not actual samples from the training set. Carlini
et al. [2021, 2019] demonstrated reconstruction of training data from generative language models.
By completing sentences, they reveal sensitive information from the training data. We note that this
approach is specific to generative language models, while our approach considers classifiers and is
less data specific. Membership-inference attacks [Shokri et al., 2017] aim to determine whether a
given data point was used to train the model or not. For these methods to work, the adversary must
be able to guess a specific input, whereas our approach does not assume such ability. Lastly, avoiding
leakage of sensitive information on the training dataset is the motivation behind differential privacy
in machine learning, which has been extensively studied [Abadi et al., 2016, Dwork et al., 2006,
Chaudhuri et al., 2011]. For an elaborated discussion on the relation of these approaches to ours see
Appendix A.

Implicit Bias. In overparameterized neural networks one might expect overfitting to occur, but it
seems that gradient-based methods are biased towards networks that generalize well [Zhang et al.,
2021, Neyshabur et al., 2017]. Mathematically characterizing this implicit bias is a major problem
in the theory of deep learning. Our approach is based on a characterization of the implicit bias of
gradient flow in homogeneous neural networks due to Lyu and Li [2019] and Ji and Telgarsky [2020]
(see Section 3 for details). The implicit bias of gradient-based methods in neural networks was
extensively studied in recent years both for classification tasks (e.g., Soudry et al. [2018], Gunasekar
et al. [2018c], Ji and Telgarsky [2018], Nacson et al. [2019], Vardi et al. [2021], Chizat and Bach
[2020], Gunasekar et al. [2018a], Moroshko et al. [2020]) and regression tasks (e.g., Gunasekar et al.
[2018b], Arora et al. [2019], Azulay et al. [2021], Yun et al. [2020], Woodworth et al. [2020], Razin
and Cohen [2020], Li et al. [2020], Vardi and Shamir [2021], Timor et al. [2022]). See Vardi [2022]
for a survey.

3 Background and Reconstruction Scheme

In this section we present our training data reconstruction scheme, as well as provide a brief overview
on the theoretical results about implicit bias, which motivate our approach.

3.1 On the Implicit Bias of Neural Networks

Let S = {(xi, yi)}ni=1 ⊆ Rd × {−1, 1} be a binary classification training dataset. Let Φ(θ; ·) :
Rd → R be a neural network parameterized by θ ∈ Rp. For a loss function ` : R→ R the empirical
loss of Φ(θ; ·) on the dataset S is L(θ) :=

∑n
i=1 `(yiΦ(θ;xi)). We focus on the logistic loss (a.k.a.

binary cross entropy), namely, `(q) = log(1 + e−q).

Our approach is based on Theorem 3.1 below, which holds for gradient flow (i.e., gradient descent
with an infinitesimally small step size). Before stating the theorem, we need the following definitions:
(1) We say that gradient flow converges in direction to θ̃ if limt→∞

θ(t)
‖θ(t)‖ = θ̃

‖θ̃‖ , where θ(t) is

the parameter vector at time t; (2) We say that a network Φ is homogeneous w.r.t. the parameters
θ if there exists L > 0 such that for every α > 0 and θ,x we have Φ(αθ;x) = αLΦ(θ;x). Thus,
scaling the parameters by any factor α > 0 scales the outputs by αL. We note that essentially any
fully-connected or convolutional neural network with ReLU activations is homogeneous w.r.t. the
parameters θ if it does not have any skip-connections (i.e., residual connections) or bias terms, except
possibly for the first layer.
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Theorem 3.1 (Paraphrased from Lyu and Li [2019], Ji and Telgarsky [2020]) Let Φ(θ; ·) be a
homogeneous ReLU neural network. Consider minimizing the logistic loss over a binary classification
dataset {(xi, yi)}ni=1 using gradient flow. Assume that there exists time t0 such that L(θ(t0)) < 1‡.
Then, gradient flow converges in direction to a first order stationary point (KKT point) of the following
maximum-margin problem:

min
θ′

1

2

∥∥θ′∥∥2 s.t. ∀i ∈ [n] yiΦ(θ′;xi) ≥ 1 . (1)

Moreover, L(θ(t))→ 0 as t→∞.

The above theorem guarantees directional convergence to a first order stationary point (of the
optimization problem (1)), which is also called Karush–Kuhn–Tucker point, or KKT point for short.
The KKT approach allows inequality constraints, and is a generalization of the method of Lagrange
multipliers, which allows only equality constraints.

The great virtue of Theorem 3.1 is that it characterizes the implicit bias of gradient flow with the
logistic loss for homogeneous networks. Namely, even though there are many possible directions of
θ
‖θ‖ that classify the dataset correctly, gradient flow converges only to directions that are KKT points
of Problem (1). In particular, if the trajectory θ(t) of gradient flow under the regime of Theorem 3.1
converges in direction to a KKT point θ̃, then we have the following: There exist λ1, . . . , λn ∈ R
such that

θ̃ =

n∑
i=1

λiyi∇θΦ(θ̃;xi) (stationarity) (2)

∀i ∈ [n], yiΦ(θ̃;xi) ≥ 1 (primal feasibility) (3)
λ1, . . . , λn ≥ 0 (dual feasibility) (4)

∀i ∈ [n], λi = 0 if yiΦ(θ̃;xi) 6= 1 (complementary slackness) (5)

Our main insight is based on Eq. (2), which implies that the parameters θ̃ are a linear combinations
of the derivatives of the network at the training data points. We say that a data point xi is on the
margin if yiΦ(θ̃;xi) = 1 (i.e. |Φ(θ̃;xi)| = 1) . Note that Eq. (5) implies that only samples which
are on the margin affect Eq. (2), since samples not on the margin have a coefficient λi = 0.

3.2 Dataset Reconstruction

Suppose we are given a trained neural network with parameters θ, and our goal is to reconstruct the
dataset that the network was trained on. Although Theorem 3.1 holds asymptotically as the time t
tends to infinity, it suggests that also after training for a finite number of iterations the parameters
of the network might approximately satisfy Eq. (2), and the coefficients λi satisfy Eq. (4). Since n
is unknown (and so is the number of samples on the margin) we set m ≥ 2n which represents the
number of samples we want to reconstruct (thus, we only need to upper bound n), and fix yi = 1 for
i = 1, . . . ,m/2 and yi = −1 for i = m/2 + 1, . . . ,m. We define the following losses:

Lstationary(x1, . . . ,xm, λ1, . . . , λm) =

∥∥∥∥∥θ −
m∑
i=1

λiyi∇θΦ(θ;xi)

∥∥∥∥∥
2

2

(6)

Lλ(λ1, . . . , λm) =

m∑
i=1

max{−λi, 0} (7)

Note that the unknown parameters are the xi’s and λi’s, and that θ and the yi’s are given. The
loss Lstationary represents the stationarity condition that the parameters of the network satisfy, and
Lλ represents the dual feasibility condition. We additionally define Lprior which represents some
prior knowledge we might have about the dataset. For example, if we know that the dataset contains
images, prior knowledge would be that each input coordinate (i.e. each pixel) is between 0 and 1.
Given no prior knowledge on the data, we can define Lprior ≡ 0. Finally, we define the reconstruction
loss as:

Lreconstruct({xi}mi=1 , {λi}
m
i=1) = α1Lstationary + α2Lλ + α3Lprior (8)

‡This ensures that `(yiΦ(θ(t0);xi)) < 1 for all i, i.e. at some time Φ classifies every sample correctly.
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where α1, α2, α3 ∈ R are tunable hyperparameters of the different losses. To reconstruct the dataset,
we can use any nonconvex optimization method (e.g. SGD) to find the x1, . . . ,xm, λ1, . . . , λm
which minimize Eq. (8). We note that the λi’s are not part of the training data, but finding them is
necessary in order to solve this optimization problem. Finally, we emphasize that there are many
other possible options to formulate the KKT conditions Eq. (2)-(5) as an unconstrained optimization
problem. However, this simple choice seemed to work quite well in practice.

We note that if there exist {xi}ni=1 and {λi}ni=1 which satisfy the KKT conditions, then there are
{xi}mi=1 and {λi}mi=1 which achieve zero loss in Eq. (8). Indeed, such a solution can be obtained by
adding to {xi}ni=1 additional points xj with λj = 0, or by duplicating some points in {xi}ni=1 and
modifying the λ’s accordingly. Also, note that since we choose m ≥ 2n, then we set at least n labels
yi to 1 and at least n labels to −1. Hence, there is a solution to Eq. (8) even though we do not know
the real distribution of labels in the actual training data.

We cannot simply use Eq. (3) and (5) in our reconstruction scheme, because they contain the constant
"1" which corresponds to the margin (i.e., mini |Φ(θ̃;xi)|). Namely, we only converge in direction to
a point θ̃ that attains margin 1, but in practice we approach some point θ which attains an unknown
margin γ (i.e., mini |Φ(θ;xi)| = γ), and we do not know in advance how to normalize it to attain a
margin of exactly 1. On the other hand, Eq. (2) and (4) hold not only for θ̃ but also for any θ that
points at the direction of θ̃, and therefore in our loss in Eq. (8) we rely only on these conditions.

Intuitively, a reason to believe that there is enough information in Eq. (2) to reconstruct the data, is
the following observation: Eq. (2) represents a set of p equations with O(nd) unknown variables,
where p is the number of parameters in the network. In practice, neural networks are often highly
overparameterized (i.e., p > nd), suggesting more equations than variables.

Finally, since by Eq. (5) we have λi = 0 for every xi that is not on the margin, then Eq. (2) implies
that θ̃ is determined only by the gradients w.r.t. the data points that are on the margin. Hence, we can
only expect to reconstruct training samples that are on the margin (see also Subsection 5.3).

4 A Simple Experiment in Two Dimensions

(a) Training Set (b) Model Landscape (c) Initialization

(d) Reconstruction (e) Removing Small λ’s (f) Removing Duplicates

Figure 2: Exemplifying our reconstruction scheme on a simple 2D dataset (see text for explanation).

In this section we exemplify our dataset reconstruction scheme on a toy example of 2-dimensional
data, i.e. we consider (x, y) ∈ R2 × {±1}. We set n = 20 training samples on the unit circle, with
alternating labels. For a visualization of the dataset see Figure 2a, blue and red "×" represent the two
classes. We trained a 3-layer model with 1000 neurons in each layer on this dataset. The model learns
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to correctly classify the training set. In Figure 2b, we visualize the output of the model as a function
of its input. Blue and red regions correspond to smaller and larger outputs of the model, respectively.

We now demonstrate our reconstruction scheme. We first randomly initialize m = 100 points in R2,
and assign 50 points to each class. This is depicted in Figure 2c, where green points correspond to
the blue class, and magenta points correspond to the red class. Next, we optimize the loss in Eq. (8),
with Lprior ≡ 0. The results of our reconstruction scheme are in Figure 2d. Note that our approach
reconstructed all the input samples, up to some noise.

To further improve our reconstruction results, we remove some of the extra points which did not
converge to a training sample. In Figure 2e we removed points xi with corresponding λi < 5.
According to Eq. (2), points with λi = 0 should not affect the parameters, hence their corresponding
xi can take any value. In practice, it is sufficient to remove points with a small enough corresponding
λi. Finally, to remove duplicates, we greedily remove points which are very close to other points.
That is, we randomly order the points, and iteratively remove points that are at distance < 0.03 from
another point. The final reconstruction result is depicted in Figure 2f.

5 Results

Top 45 images reconstructed from a model trained on CIFAR10 (rows 1, 3, 5), and their corresponding
nearest-neighbors from the training-set of the model (rows 2, 4, 6)

Top 45 images reconstructed from a model trained on MNIST (rows 1, 3, 5), and their corresponding
nearest-neighbors from the training-set of the model (rows 2, 4, 6)

Figure 3: Reconstructing training samples from two binary classifiers – one trained on 500 images
with labels animals/vehicles (CIFAR), and the other trained on 500 odd/even digit images (MNIST).
Train errors are zero, test accuracies are 88.0%/77.6% for MNIST/CIFAR

6



5.1 Experimental Setup

Datasets. We conduct experiments on binary classification tasks where images are taken from the
MNIST [LeCun et al., 2010] and CIFAR10 [Krizhevsky et al., 2009] datasets and the labels are set to
odd vs. even digits (MNIST), and vehicles vs. animals§ (CIFAR10). We make sure that the class
distribution in the training and test sets is balanced, and normalize the train and test sets by reducing
the mean of the training set from both.

Training. We consider MLP architectures. Unless stated otherwise, our models comprise of three
fully-connected layers with dimensions d-1000-1000-1 (where d is the dimension of the input) with
ReLU activations. Biases are set to zero except for the first layer, to line up with the theoretical
assumption of homogeneous models in Section 3. The parameters are initialized using standard
Kaiming He initialization [He et al., 2015] except for the weights of the first layer that are initialized
to a Gaussian distribution with standard deviation 10−4 (see discussion in Subsection 5.2). We train
our models using full batch gradient descent for 106 epochs with a learning rate of 0.01. All models
achieve zero training error (i.e., all the train samples are labeled correctly), and a training loss< 10−6.
To compute the test accuracy, we use the original test sets of MNIST/CIFAR10 with 10000/8000
images respectively, and labeled accordingly.

5.2 Training Set Reconstruction

We minimize the loss defined in Eq. (8) with α1 = 1, α2 = 5, α3 = 1. We initialize xi ∼ N (0, σxI),
where σx is a hyperparameter, and λi ∼ U [0, 1]. We set the number of reconstructed samples to m =
2n (where n is the size of the original training set). Note that our loss contains the derivative of ReLU
Eq. (6). This derivative is a step function, containing only flat regions which are hard to optimize. We
replace the derivative of the ReLU layer (backward function) with a sigmoid, which is the derivative
of softplus (a smooth version of ReLU). We use the fact that our inputs are images to penalize values
outside the range [−1, 1]. To this end we set Lprior(z) = max{z − 1, 0}+ max{−z − 1, 0} for each
pixel z, and average over all dimensions (pixels) in xi. We optimize our loss for 100, 000 iterations
using an SGD optimizer with momentum 0.9. We conduct a total of 100 runs using a random grid
search on the hyperparameters (e.g. learning rate, σx. See Appendix B for full details). This results
in 100m “reconstructed” inputs.

While some xi end up converging to a training sample, some end as noise (similar phenomenon can
be observed in 2D in Figure 2d). To identify the reconstructions that are most similar to a training
image we use the SSIM metric [Wang et al., 2004].

In Figure 3 we show the best reconstruction results (in terms of SSIM) for models trained on n=500
samples from MNIST/CIFAR10 datasets (with test accuracy 88.0%/77.6% resp.). Note that the
reconstructed images are very similar to the real input data, although a bit noisy. The source of this
noise is not entirely clear. Possible reasons may be the complexity of the optimization problem, or
the possibility that the trained model has not fully converged to the KKT point of Problem (1).

We observed that small initializations significantly improve the quality of the reconstructed samples.
We conjecture that small initialization causes faster convergence to the direction of the KKT point.
This is also theoretically implied in Moroshko et al. [2020] (for certain linear models). Similarly,
training for more epochs also improves the quality of the reconstruction. In Appendix C we show
results for reconstructions from networks trained with standard initialization or trained for much
fewer epochs. During the training phase, we used full batch gradient descent, to remain as much
aligned to the theoretical setting. In Appendix C we show that our approach can reconstruct training
data also from models trained with mini-batch SGD.

5.3 Practice vs. Theory

In this section we analyze some relations between our experimental results to the theory laid down in
Section 3. Given a trained model and its reconstructed samples, we match each training sample to
its best reconstruction (in terms of SSIM score). We then plot this SSIM score against Φ(θ;x) (the
value of the model’s output on this training sample) – for all training samples. In Figure 4 each cell
shows such plot for a given model. The top row shows models trained on the same architecture with

§Automobile, Truck, Airplane, Ship vs. Bird, Horse, Cat, Dog, Deer, Frog.
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Models with the same architecture (1000-1000) trained on different number of training samples (n)

100 50 0 50 100
0.00

0.25

0.50

0.75

1.00
SS

IM
n = 50

100 50 0 50 100

n = 100

100 50 0 50 100

n = 500

100 50 0 50 100

n = 1000

Classifier Output A

Models trained on n = 500 samples with different architectures

100 50 0 50 100
0.00

0.25

0.50

0.75

1.00

SS
IM

100-100

100 50 0 50 100

1000-500-100

100 50 0 50 100

1000-500-100-50

100 50 0 50 100

1000-1000
Non-Homogeneous

Classifier Output A

A

Figure 4: Each point represents a training sample. The y-axis is the highest SSIM score achieved
by a reconstruction of this sample, the x-axis is the output of the model. Top: The effect of training
the same model on different number of training samples (n). Bottom: The effect of training models
with different architectures (on n = 500 training samples). The right-most plot shows a 3-layer
non-homogeneous MLP (with bias terms in all hidden layers). See discussion in Section 5.3.

different number of training samples (n), where in the bottom row we show the results for models
trained on n = 500 training samples, with different architectures (all results are on CIFAR10).

Recall that we do not expect to reconstruct samples that are far from the margin (Subsection 3.2). It
is evident from Figure 4 that good reconstructions (e.g., SSIM> 0.4) are obtained for samples that
lie on the margin, as expected from theory. The plots indicate that increasing training size makes
reconstruction more difficult. Lastly, as seen from the rightmost plot in the bottom row, we manage
to get high-quality reconstructions from a non-homogeneous model (trained with biases in all hidden
layers). This indicates that our approach may work beyond the theoretical limitations of Theorem 3.1.

5.4 Comparison to other Reconstruction Schemes

Model Inversion. Given a trained model Φ(θ; ·), we search for x which maximizes or minimizes
Φ(θ;x), corresponding to positive or negative labels. We initialize x ∼ N (0, σI) for several values
of σ and optimize w.r.t. the model output (see Appendix B for the choice of hyperparameters).
In Figure 5a (left) it is apparent that in our two-dimensional experiment, model inversion successfully
reconstructed 7 training samples, which indeed lie on a local minimum or maximum. However,
note that our scheme reconstructs all 20 samples (Figure 2). In high dimensions, namely, in MNIST
and CIFAR, while our scheme can reconstruct a large portion of the training set (Figure 3a), model
inversion converges to noisy/blurry class representatives that correspond to high/low output values
(Figure 5a, right). Such results are typical with model inversion since not all class members from the
training set are visually similar (see discussions in Shokri et al. [2017], Melis et al. [2019]).

Weights Visualization. The weights of the first fully-connected layer have the same dimension as
that of the input. One may wonder whether training samples are directly encoded there. In Figure 5b
we show the weights that are most similar (SSIM) to a training sample, or all of them in the 2D case.
As seen in the 2D case, most weights are in the general direction of a training sample, however the
scale is unknown without prior knowledge on the data. For images (MNIST/CIFAR10), not more than
3 or 4 of the weights have resemblance to training samples, while our scheme manages to reconstruct
dozens of samples. See Appendix B and C for details and all 1000 weights of the models.

6 Discussion and Conclusion

Even though our results are shown for relatively small-scale models, they are the first to show that the
parameters of trained networks may contain enough information to fully reconstruct training samples,
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(b) Weights of the first Fully-Connected Layer

(a) Model Inversion

MNIST

CIFAR10

Increasing Value of the Model Output

M
N

IS
T

C
IF

A
R

1
0

2D

2D

Figure 5: Comparison to other reconstruction schemes. Top: Model inversion on the 2D experiment
(left), on CIFAR10 (top right) and MNIST (bottom right). The CIFAR and MNIST images are
ordered by the value of their output from left (smallest) to right (largest). Bottom: Weights of the
first (fully-connected) layer for the 2D experiment (left), CIFAR10 (top right) and MNIST (bottom
right). The weights for the 2D experiment are the small purple dots. For the CIFAR and MNIST
experiments we show the 10 weights with the highest SSIM score.

and the first to reconstruct a substantial amount of training samples. Moreover, the theoretical basis
of the implicit bias in neural networks provides an analytic explanation to this phenomenon.

Solving our optimization problem for convolutional neural networks turned out to be more challenging
and is therefore a subject of future research. We note that the theoretical results that we rely on (i.e.,
Theorem 3.1) also covers convolutional neural networks. We believe that the homogeneity restriction
might be relaxed, and showed reconstructions also from a non-homogeneous model (Figure 4, bottom-
rightmost). We also believe that our method may be extended to multi-class classifiers using an
extension of Theorem 3.1. Finally, showing reconstructions on larger models and datasets, or on
tabular or textual data are interesting future directions.

On the theoretical side, it is not entirely clear why our optimization problem in Eq. (8) converges
to actual training samples, even though there is no guarantee that the solution is unique, especially
when using no prior (other than simple bounding to [−1, 1]). As a final note, our work brings up the
question: are samples on margin the only ones that can be recovered from a trained classifier? or
there exist better reconstruction schemes to reconstruct even more training samples from a trained
neural network.
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A More Details on Privacy Attacks in Deep Learning

Below we discuss several privacy attacks that have been extensively studied in recent years (see Liu
et al. [2021], Jegorova et al. [2021] for surveys).

Membership Inference. In membership-inference attacks [Shokri et al., 2017, Long et al., 2018,
Salem et al., 2018, Yeom et al., 2018, Song and Mittal, 2021] the adversary determines whether a
given data point was used to train the model or not. For example, if the model was trained on records
of patients with a certain disease, the adversary might learn that an individual’s record appeared in
the training set and thus infer that the owner of the record has the disease with high chance. Note
that membership inference attacks are significantly different from our attack, as the adversary must
choose a specific data point. E.g., if the inputs are images, then the adversary must be able to guess a
specific image.

Model Extraction. In model-extraction attacks [Tramèr et al., 2016, Oh et al., 2019, Wang and
Gong, 2018, Carlini et al., 2020b, Jagielski et al., 2020, Milli et al., 2019, Rolnick and Kording, 2020,
Chen et al., 2021] the adversary aims to steal the trained model functionality. In this attack, the
adversary only has black-box access with no prior knowledge of the model parameters or training
data, and the outcome of the attack is a model that is approximately the same as the target model.
It was shown that in certain cases the adversary can reconstruct the exact parameters of the target
model. We note that such attacks might be combined with our attack in order to allow extraction of
the training dataset in a black-box setting. Namely, in the first stage the model is extracted using
model-extraction attacks, and in the second stage the training dataset is reconstructed using our attack.

Model Inversion. Model-inversion attacks [Fredrikson et al., 2015] are perhaps the closest to our
attack, as they consider reconstruction of input data given a trained model. These attacks aim to
infer class features or construct class representatives, given that the adversary has some access (either
black-box or white-box) to a model.

Fredrikson et al. [2015] showed that a face-recognition model can be used to reconstruct images
of a certain person. This is done by using gradient descent for obtaining an input that maximizes
the output probability that the face-recognition model assigns to a specific class. Thus, if a class
contains only images of a certain individual, then by maximizing the output probability for this class
we obtain an image that might be visually similar to an image of that person. It is important to note
that the reconstructed image is not an actual example from the training set. Namely, it is an image that
contains features which the classifier identifies with the class, and hence it might be visually similar
to any image of the individual (including images from the training set). If the class members are not
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all visually similar (which is generally the case), then the results of model inversion do not look like
the training data (see discussions in Shokri et al. [2017] and Melis et al. [2019]). For example, if this
approach is applied to the CIFAR-10 dataset, it results in images which are not human-recognizable
[Shokri et al., 2017]. In Zhang et al. [2020], the authors leverage partial public information to learn
a distributional prior via generative adversarial networks (GANs) and use it to guide the inversion
process. That is, they generate images where the target model outputs a high probability for the
considered class (as in Fredrikson et al. [2015]), but also encourage realistic images using GAN.
We emphasize that from the reasons discussed above, this method does not reconstruct any specific
training data point. Another approach for model inversion is training a model that acts as an inverse of
the target model [Yang et al., 2019]. Thus, the inverse model takes the predicted confidence vectors of
the target model as input, and outputs reconstructed data. A recent paper Balle et al. [2022] shows a
reconstruction attack where the attacker has information about all the data samples except for one. On
the theoretical side, Brown et al. [2021] prove that in certain settings, models memorize information
about training examples, and show reconstruction attacks on some synthetic datasets.

Model inversion and information leakage in collaborative deep learning was studied in, e.g., He et al.
[2019], Melis et al. [2019], Hitaj et al. [2017], Zhu et al. [2019], Yin et al. [2021], Huang et al. [2021].
Extraction of training data from language models was studied in Carlini et al. [2021, 2019], where
they use the ability of language models to complete a given sentence in order to reveal sensitive
information from the training data. We note that this attack is specific to language models, which are
generative models, while our approach considers classifiers and is less specific.

Defences against Training Data Reconstruction. Avoiding leakage of sensitive information on
the training dataset is the motivation behind differential privacy in machine learning, which has
been extensively studied in recent years [Abadi et al., 2016, Dwork et al., 2006, Chaudhuri et al.,
2011]. This approach allows provable guarantees on privacy, but it typically comes with high cost in
accuracy. Other approaches for protecting the privacy of the training set, which do not allow such
provable guarantees, have also been suggested (e.g., Huang et al. [2020], Carlini et al. [2020a]).

B Implementation Details
B.1 Hardware, Software and Running Time

A typical reconstruction runs for about 30 minutes on a GPU Tesla V-100 32GB, for reconstructing
m = 1000 samples from a model with architecture d-1000-1000-1, and for 100, 000 epochs (running
times slightly differ with the number of samples m, number of epochs and the size of the model, but
it still takes about this time to run). Our code is implemented in PYTORCH [Paszke et al., 2019]. We
will release the code.

B.2 Hyperparameters

Our reconstruction scheme has 4 hyperparameters. Already discussed in the paper are the learning
rate and σx (discussed in Subsection 5.2). In Subsection 5.2 we discuss the modification in the
derivative of a ReLU layer y = max{0, x}. The backward function of a ReLU layer works as follows:
given the “gradient from above” ∂L

∂y , the backward gradient is ∂L
∂y · I{x > 0}. Our modification to

the backward gradient is ∂L
∂y · σ (αx), where σ(z) = 1

1+e−z and α is a hyperparameter. As noted in
the paper, this derivative is essentially the derivative of a SoftReLU, where the derivative is the same
as ReLU for α→∞ and is the derivative of the identity function for α→ 0. Note that this is done
only in the backward function, while the forward function remains that of a ReLU function. We also
add an extra hyperparameter λmin to our Lλ loss from Eq. (7):

Lλ(λ1, . . . , λm) =

m∑
i=1

max{−λi + λmin, 0}

The intuition behind is to encourage as many samples to lie on a margin, and thus try and reconstruct
some sample from the training set.

To sum it all, the hyperparameters of our reconstruction scheme are:

1. Reconstruction learning rate
2. σx, the initial scale of xi initialization
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3. α, of the derivative of the modified ReLU

4. λmin

To find the set of hyperparamerers we used Weights&Biases [Biewald, 2020] using a random grid
search where the parameters are sampled from the following distributions:

• Learning rate, log-uniform in [10−5, 1]

• σx, log-uniform in [10−6, 1]

• ReLU derivative α, uniform in [10, 500]

• λmin, log-uniform in [10−4, 1]

When searching for hyperparameters for the model inversion results in Subsection 5.4 we use the
following:

• Learning rate, log-uniform in [10−6, 1]

• σx, log-uniform in [10−7, 1]

B.3 Post-Processing of Reconstructed Samples

After the reconstruction run ends we want to match the reconstructed samples to samples from the
training set. This is done in the following manner:

1. Scaling. Each reconstructed sample is stretched to fit into the range [0, 1] (by linear trans-
formation of its minimal/maximal values).

2. Searching Nearest Neighbours. For each training sample from the training set we compute
the distance to all reconstructed outputs using NCC [Lewis, 1995].

3. Voting. For each training sample we compute the mean of all the closest nearest neighbours
(all reconstructed samples with NCC score largest than 0.9 of the distance to the closest
nearest neighbour). Now we have pairs of trainig-sample and its reconstruction.

4. Sorting. For each pair we compute its SSIM [Wang et al., 2004], and sort the results by
descending order.

C Supplementary Results

C.1 Results for Models in Figure 4

In this subsection we provide more details and experiments on each model presented in Figure 4. In
Table 1 we show the train loss, test error and test loss of each model from Figure 4. All the models
achieved a train accuracy of 100%. We note that adding more training samples improves the test
accuracy, while adding more layers keeps the test accuracy approximately the same. In Figures 6-11
we show the best 45 extracted images (sorted by SSIM score) for the models presented in Figure 4.
The reconstructions for the 50 and 500 samples with a d-1000-1000-1 architecture is presented in
Figure 1 and Figure 3 (top) respectively.

C.2 All Comparisons for Subsection 5.4

In this subsection we provide more detailed results on the comparison to other methods as presented
in Subsection 5.4. In Figure 12 and Figure 13 we provide more results from the model inversion
attack on models trained on CIFAR10 and MNIST respectively. These are the same models from
Figure 5 (a). In this attack, we either minimize or maximize the model’s output w.r.t. a randomly
initialized input. In this experiment, half of the initializations were maximized and the other half
is minimized. The images are ordered by output of the model, in an increasing order. The results
indicate that the model inversion attack mostly converge to similar reconstructions, even with many
different initializations and different hyperparameters. Also, these reconstruction are mostly blurry,
and probably represent the averages of each class.
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Figure 6: Architecture: d-1000-1000-1, Samples: 100
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.

Figure 7: Architecture: d-1000-1000-1, Samples: 1000
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.

Figure 8: Architecture: d-100-100-1, Samples: 500
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.
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Figure 9: Architecture: d-1000-500-100-1, Samples: 500
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.

Figure 10: Architecture: d-1000-500-100-50-1, Samples: 500
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.

Figure 11: Architecture: d-1000-1000-1 (non-homogeneous), Samples: 500
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.
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Architecture Training Set Size (n) Train Loss Test Accuracy Test Loss

1000-1000 50 1.5 · 10−6 72% 2.14
1000-1000 100 2.0 · 10−6 74% 2.41
1000-1000 500 4.0 · 10−6 78% 2.09
1000-1000 1000 5.5 · 10−6 79% 1.96
100-100 500 3.0 · 10−7 77% 2.72
1000-500-100 500 1.2 · 10−7 78% 3.14
1000-500-100-50 500 8.4 · 10−7 77% 2.57
1000-1000
(Non-Homogeneous) 500 4.3 · 10−6 77% 2.12

Table 1: Train/Test loss and Test Error for models shown in Figure 4

In Figure 14 and Figure 15 we show all the weights, as images, of the first fully-connected layer of
models trained on CIFAR10 and MNIST respectively. These are the same models as in Figure 3,
i.e., there are 1000 weights. Some weights are indicative of several input samples, e.g., a plane from
CIFAR10 and the digits 8 and 5 from MNIST. We note that our reconstruction scheme is able to
reconstruct much more samples, and in better quality than is represented in these weights.

C.3 Stretching the Theoretical Limitations

In this section we show results from several experiments which go beyond the theoretical limitations
of Theorem 3.1.

Experiment Training Set Size (n) Train Loss Test Accuracy Test Loss

Standard Initialization 10 8.3 · 10−7 71% 1.68
Standard Initialization 50 1.5 · 10−6 74% 1.72
SGD 500 4.0 · 10−6 77% 2.21
10k Epochs (CIFAR10) 500 0.0039 77% 1.22
10k Epochs (MNIST) 500 0.014 87% 0.55

Table 2: Train/Test loss and Test Error for models shown in Figure 16

C.3.1 Standard Initialization Scale

In this subsection we consider networks trained with standard initialization scales. We recall that
in the experiments presented in Section 5 the first fully-connected layer is initialized to a Gaussian
distribution with mean 0 and standard deviation 10−4, while the other layers are initialized by standard
Kaiming initialization [He et al., 2015]. In Figure 17 and Figure 18 we show reconstructions of a
model trained on CIFAR10 on 10 and 50 samples respectively, where the all the layers of the model
are initialized by standard Kaiming initialization. The architecture of the model is d-1000-1000-1.
We note that although the quality of the reconstructions is lower than when initializing the first layer
with a small scale, there is still a strong signal that some of reconstructions correlate with training
samples. It is an interesting future direction to improve the reconstruction quality for models with
standard initialization.

In Figure 16 (a,b) we plot the SSIM score of each training sample against the output of the model.
Note that indeed in these experiments the best SSIM score is lower than from other experiments
presented in Figure 4. This corresponds to the lower quality of reconstructions when using standard
initialization.

C.3.2 Less Epochs

In the experiments from Section 5 we trained each model for 106 epochs. The reason for this long
training time is that Theorem 3.1 gives guarantees only when converging to KKT point. Such a
convergence happens only after training until infinity, and longer training time may converge closer
to the KKT point. In this section we provide reconstruction results for models trained for only 104

epochs. Figure 19 and Figure 20 show reconstructions for models trained on 500 samples from
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Figure 12: Model inversion attack on a model trained on CIFAR10, with 500 samples. We re-
constructed a total of 40, 000 images using different initializations and hyperparameters. We
sorted the results according to the model’s output, and selected 500 representative with index
i = 0, 80, 160, ..., 40000.
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Figure 13: Model inversion attack on a model trained on MNIST, with 500 samples. We reconstructed
a total of 40, 000 images using different initializations and hyperparameters. We sorted the results
according to the model’s output, and selected 500 representative with index i = 0, 80, 160, ..., 40000.
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Figure 14: All the 1000 weights, shown as images, of the first fully-connected layer of a model
trained on 500 samples on CIFAR10.

23



Figure 15: All the 1000 weights, shown as images, of the first fully-connected layer of a model
trained on 500 samples on MNIST.
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Figure 16: Each point represents a training sample. The y-axis is the highest SSIM score achieved by
a reconstruction of this sample, the x-axis is the output of the model. From left to right: (a,b) models
trained with standard Kaiming initialization in all layers on 10 and 50 CIFAR samples. (c) A model
trained using SGD with a batch size of 50. (d,e) Models trained for 104 epochs on 500 samples from
CIFAR and MNIST respectively.

Figure 17: Reconstructions from a model trained on 10 CIFAR10 images with labels animals vs.
vehicles. In the first row are the reconstructions, and in the second row are their corresponding nearest
neighbor from the dataset (sorted by SSIM score).

Figure 18: Top 10 reconstructions from a model trained on 50 CIFAR10 images with labels animals
vs. vehicles. Top row shows reconstructions, and bottom row shows their corresponding nearest
neighbor.

CIFAR10 and MNIST datasets respectively, with an architecture of d-1000-1000-1. It is clear that
the quality of the reconstruction is very similar to when training for more epochs, this may indicate
that even after significantly less training epochs the model converge sufficiently close to a KKT point.

In Figure 16 (d,e) we plot the SSIM score of each training sample against the output of the model.
We note that we are able to reconstruct samples which appear approximately on the margin for both
MNIST and CIFAR. In addition, the model for MNIST did not achieve 0 train error, and the margin
is still very small. With that said, we are still able to reconstruct a large portion of the data with high
quality. This goes beyond our theoretical limitations which have guarantees only for models which
successfully label the entire training set.

C.3.3 Mini-batch SGD

In the experiments from Section 5 we trained the models using full-batch gradient descent. This was
done to align with the theoretical guarantees of Theorem 3.1, which assume training with gradient
flow. In Figure 21 we show reconstructions from a model trained with mini-batch SGD, using a
batch size of 50. The model is trained on 500 images from CIFAR10, and with an architecture of
d-1000-1000-1.

In Figure 16 (c) we plot the SSIM score of each training sample against the output of the model. This
plot shows that we indeed reconstruct samples that lie on the margin.
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Figure 19: Reconstructions from a model trained for 104 epochs on CIFAR10 with labels animals vs.
vehicles. Odd rows (1,3,5) are reconstruction, and even rows (2,4,6) are their nearest neighbor from
the training samples.

Figure 20: Reconstructions from a model trained for 104 epochs on MNIST with labels odd vs. even.
Odd rows (1,3,5) are reconstruction, and even rows (2,4,6) are their nearest neighbor from the training
samples.

Figure 21: Reconstructions from a model trained using SGD with a batch size of 50. The model
trained on 500 images from CIFAR10 with labels animals vs. vehicles. Odd rows (1,3,5) are
reconstructions and even rows (2,4,6) are their nearest neighbor from the training dataset.
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